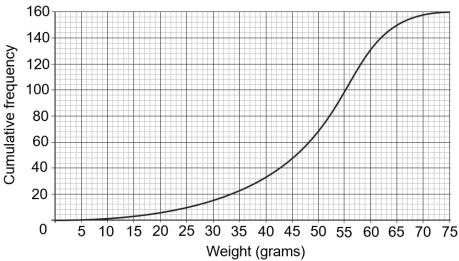
Mathematics: analysis and approaches			
Standard level	Name		
Paper 2			
Date:			
1 hour 30 minutes			

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **Mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

exam: 10 pages


Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A (38 marks)

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 8]

The cumulative frequency graph below represents the weight in grams of 160 limes picked from a mature Mexican Key lime tree.

- (a) Estimate the
 - (i) median weight of the limes;
 - (ii) 40th percentile of the weight of the limes.

[3]

(b) Estimate the number of limes which weigh more than 50 grams.

- [2]
- (c) The middle 50% of limes weigh between a grams and b grams, where a < b. Find the value of a and the value of b.

[3]

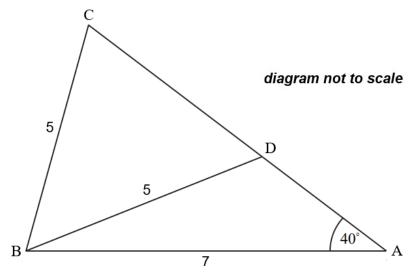
 •
 •
 • • • • • • • • • • •
 • • • • • • • • • •
 •
 •

2. [Maximum mark: 6]

On the first day of 2024, Noah deposited h dollars in a bank account that earns a nominal annual interest rate of 4.8% compounded **monthly**. Interest is added to the account on the first day of each month. Interest is added for the first time on 1st February 2024.

The amount of money in Noah's account on the first day of each year follows a geometric sequence with the common ratio r.

(a)	Find the value of r .	[3]
(b)	If Noah makes no further deposits into or withdrawals from the account, find the year in which his account has at least $2h$ dollars in it (double the initial deposit) for the first time.	[3]


_			
2	IN/lovimum	mark:	ᇊ
3.	[Maximum	IIIain.	IJΙ

Prove the following statement:

If m and n are both odd integers, then m+n is an even integer.

4. [Maximum mark: 6]

Consider the diagram below with the measure of the angle at vertex A and lengths of line segments [AB], [BC] and [BD] indicated. Find the length of line segment [CD].

5.	Maximum	mark.	7
J.	IIVIAAIIIIUIII	main.	•

A particle moves in a straight line. At time t seconds, the particle's displacement from a fixed point O is s meters. The particle's velocity v (in meters per second) is given by $v = \sin\left(\frac{t}{2}\right)$, $t \ge 0$. When t = 0, s = 2 meters.

- (a) Express the displacement s as a function of time t. [5]
- (b) Find the total distance the particle travels from t = 0 seconds to t = 10 seconds. [2]

6.	[Maximum	mark.	6
Ο.	IIVIAXIIIIUIII	maik.	O

When $\left(1+\frac{2x}{3}\right)^n$, $n \in \mathbb{N}$, is expanded in ascending powers of x, the coefficient of x^2 is 68.

Find the value of n .	[5]
	Find the value of n .

[1]

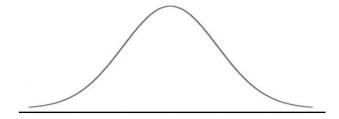
• • • • • • • • • • • • • • • • • • • •	 	
• • • • • • • • • • • • • • • • • • • •	 	
• • • • • • • • • • • • • • • • • • • •	 	
•••••	 	

[4]

Do **not** write solutions on this page.

Section B (42 marks)

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

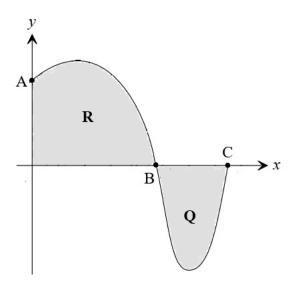

7. [Maximum mark: 16]

A large farm produces eggs that are packaged in boxes with 12 eggs in each box. The probability that a single egg is cracked is 0.017. A random box is selected and the 12 eggs in it are inspected.

- (a) Find the probability that exactly one egg in the box is cracked. [3]
- (b) A box fails inspection if at least two eggs in it are cracked. Find the probability that the randomly selected box passes (does not fail) inspection. [3]

The weights of individual eggs are normally distributed with a mean of 58 grams and a standard deviation of 4.7 grams. Before the eggs are packed in boxes a very large number of them are placed in a sorting bin.

- (c) One egg is chosen at random from the bin. Find the probability that this egg
 - (i) weighs less than 64 grams;
 - (ii) weighs between 52 grams and 64 grams.
- (d) 10% of the eggs in the bin weigh less than w grams.
 - (i) Copy and complete the following normal distribution diagram, to represent this information, by indicating w, and shading the appropriate region.



- (ii) Find the value of w. [4]
- (e) An egg selected from the sorting bin is accepted to be put into a box if its weight lies between 52 grams and 64 grams. 12 eggs are randomly selected from the sorting bin. Find the probability that all the eggs are accepted to be put in a box. [2]

Do **not** write solutions on this page.

8. [Maximum mark: 12]

The figure below shows the graph of the function $h(x) = \sin(e^x)$ where x is in **radians**. It intersects the y-axis at A, and intersects the x-axis at B and C. The domain of h is $0 \le x \le k$ where k is the x-coordinate of C. Region \mathbf{R} is bounded by the y-axis, the x-axis and the graph of h. Region \mathbf{Q} is bounded by the x-axis and the graph of h.

- (a) Find the coordinates of A. [2]
- (b) The coordinates of B and C can be written in the form $(\ln p, 0)$.
 - (i) Find the exact value of p for B.
 - (ii) Find the exact value of p for C.
 - (iii) Hence, write down the domain of function h. [5]
- (c) Write down the range of function h. [1]
- (d) (i) Write down the integral which represents the area of region **Q**.
 - (ii) Find the total area of the shaded regions \mathbf{R} and \mathbf{Q} . [4]

Do **not** write solutions on this page.

9. [Maximum mark: 14]

Consider the rational function $f(x) = \frac{3x-3}{x-6}$, $x \ne 6$.

- (a) Sketch the graph of *f* clearly indicating any *x*-intercept(s), *y*-intercept(s) and asymptotes, and write down their coordinates and equations. [5]
- (b) Find an expression for the inverse function $f^{-1}(x)$. [4]

Consider another rational function $g(x) = \frac{k}{1-x}$, $x \neq 1$ where $k \in \mathbb{R}$.

- (c) Write down the equation of the horizontal asymptote for the graph of g. [1]
- (d) Find the value of k such that $(f \circ g)(x) = \frac{x+5}{2x}, x \neq 0$ [4]